Alternating Parity of Tchebycheff Systems

ELI PASSOW

Mathematics Department, Temple University, Philadelphia, Pennsylvania 19122 Communicated by Oved Shisha Received November 26, 1971

A system of functions $\{U_k\}$, $U_k \in C[a, b]$, k = 0, 1, ..., n, is said to be a Tchebycheff system (TS) on [a, b] if $\sum_{k=0}^{n} a_k U_k$ has at most *n* distinct zeros in [a, b], for any nontrivial choice of real $\{a_k\}$. Let $0 = t_0 < t_1 < \cdots < t_n$ be a sequence of real numbers. It is known that $\{x^{t_k}\}$, k = 0, 1, ..., n, is a TS on any interval [a, b] satisfying $0 \le a < b$ [1]. If a < 0 < b, this result does not necessarily hold; e.g., $\{1, x^2\}$ is not a TS on [-1, 1]. In this paper we seek conditions on $\{t_k\}$ that are necessary and sufficient for $\{x^{t_k}\}$ to be a TS on $(-\infty, \infty)$. In this case, naturally, we restrict the t_k to be integers.

DEFINITION. A sequence of integers $\{t_k\}_{k=0}^n$ is said to have the alternating parity property (APP) if and only if $t_0 = 0$ and for all k, t_{2k} is even and t_{2k+1} is odd.

THEOREM. Let $0 = t_0 < t_1 < \cdots < t_n$ be a sequence of integers. Then $\{x^{t_k}\}$ is a TS on $(-\infty, \infty)$ if and only if $\{t_k\}$ has APP.

Proof. Suppose $\{t_k\}$ has APP. We prove by induction that $\{x^{t_k}\}$ is a TS on $(-\infty, \infty)$.

{0, t_1 } has APP if and only if t_1 is odd, in which case $a_0 + a_1x^{t_1}$ has a unique zero for any nontrivial choice of a_0 , a_1 . Assume the theorem true for n-1. Let $\{a_k\}$, k = 0,1,...,n be arbitrary and set $P(x) = \sum_{k=0}^{n} a_k x^{t_k}$. Then $P'(x) = \sum_{k=1}^{n} (a_k t_k) x^{t_k-1} = x^{t_1-1} \sum_{k=1}^{n} (a_k t_k) x^{t_k-t_1}$.

Let $b_{k-1} = a_k t_k$ and $S_{k-1} = t_k - t_1$, k = 1, 2, ..., n. Then $S_0 = 0$ and $\{S_k\}$, k = 0, 1, ..., n - 1 has APP. Thus, $P'(x) = x^{t_1-1} \sum_{k=0}^{n-1} b_k x^{S_k} = x^{t_1-1}Q(x)$. By induction hypothesis Q(x) has at most n - 1 distinct zeros. If $b_0 = 0$, then P'(x) has at most n - 1 distinct zeros, so that P(x) has at most n distinct zeros, since the zeros of P'(x) either separate the roots of P(x), are points of inflection of P(x), or are zeros of P(x). If $b_0 \neq 0$, then 0 is not a root of Q(x), so that P'(x) could have n zeros. Since, however, $t_1 - 1$ is even, 0 is a point of inflection of P(x), and not a local maximum or minimum.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

0 is thus not a separating zero of P'(x), so that P'(x) has at most n-1 distinct separating zeros, and, hence, P(x) has at most n distinct zeros.

Before considering the converse we prove a preliminary result.

LEMMA. Suppose $\{t_k\}$, k = 0, 1, ..., n, has APP. Then there exist $\{a_k\}$, k = 0, 1, ..., n such that $P(x) = \sum_{k=0}^{n} a_k x^{t_k}$ has n simple real zeros.

Proof. By induction. $\{0, t_1\}$ has APP if and only if t_1 is odd. In this case, $P(x) = 1 - x^{t_1}$ has a simple zero at x = 1.

Assume the lemma is true for n-1; i.e., suppose there exist $\{a_k\}$, k = 0, 1, ..., n-1 such that $Q(x) = \sum_{k=0}^{n-1} a_k x^{t_k}$ has n-1 simple real zeros. We may assume that $a_{n-1} > 0$.

Case 1. t_{n-1} odd, t_n even. Then $Q(x) \to -\infty$ as $x \to -\infty$. Let

$$m = \min\{|Q(x)|: x \text{ a local max or min of } Q(x)\};$$

$$a = \min\{x: Q(x) = -m\};$$

$$b = \max\{x: Q(x) = m\};$$

$$c = \max(|a|, |b|);$$

$$\epsilon = m/2c^{t_n}.$$

Note that m > 0, since, by induction hypothesis, Q(x) is assumed to have n - 1 simple real zeros, while by the first part of the theorem, Q(x) can have no more than n - 1 distinct real zeros. Thus Q(x) has exactly n - 1 simple real zeros and no other real zeros, so that if $Q(\xi) = 0$ then $Q'(\xi) \neq 0$. Hence, if $Q(\xi) = 0$, then ξ is not a local max or min of Q(x).

Let $P(x) = Q(x) + \epsilon x^{t_n}$. Then $|P(x) - Q(x)| \leq m/2$, $a \leq x \leq b$. Let x_i , i = 1, 2, ..., n - 1, be the zeros of Q(x). Then there exist $z_i \in (x_i, x_{i+1})$, i = 1, 2, ..., n - 2, such that $Q'(z_i) = 0$. Then Q(a) = -m, $Q(z_1) \geq m$, $Q(z_2) \leq -m, ..., Q(z_{n-2}) \leq -m$. Thus P(a) < 0, $P(z_1) > 0$, $P(z_2) < 0, ..., P(z_{n-2}) < 0$, so that P(x) has n - 2 zeros in (a, z_{n-2}) . Also $P(x) \to \infty$ as $x \to \pm \infty$, and, hence, P(x) has two additional zeros, one in $(-\infty, a)$, the other in (z_{n-2}, ∞) . Thus P(x) has a total of n simple real zeros.

Case 2. t_{n-1} even, t_n odd. Then $Q(x) \to \infty$ as $x \to -\infty$. Let m, b be as in Case 1, and let

$$a = \min\{x: Q(x) = m\};$$

$$c = \max(|a|, |b|);$$

$$\epsilon = m/2c^{t_n},$$

296

and let $P(x) = Q(x) + \epsilon x^{t_n}$. Following the method of Case 1, we prove that P(x) has *n* simple real zeros, thus proving the lemma.

We return to the converse of the theorem which is also proved by induction. $\{0, t_1\}$ does not have APP if and only if t_1 is even. In this case $P(x) = 1 - x^{t_1}$ has two distinct real zeros in $(-\infty, \infty)$ so that $\{1, x^{t_1}\}$ is not a TS on $(-\infty, \infty)$.

Now suppose the theorem is true for n - 1, and suppose $\{t_k\}, k = 0, 1, ..., n$ does not have APP.

Case 1. $\{t_k\}, k = 0, 1, ..., n - 1$ has APP.

There are two possibilities: t_{n-1} and t_n odd, or t_{n-1} and t_n even. We consider only the first; the second is handled analogously. By the lemma, there exist $\{a_k\}$, k = 0, 1, ..., n - 1 such that $Q(x) = \sum_{k=0}^{n-1} a_k x^{t_k}$ has n-1 simple real zeros. We assume that $a_{n-1} > 0$. Then $Q(x) \to \infty$ as $x \to \infty$ and $Q(x) \to -\infty$ as $x \to -\infty$. Let m, a, b, c, and ϵ be as in Case 1 of the lemma, and let $P(x) = Q(x) - \epsilon x^{t_n}$. Let x_i , i = 1, 2, ..., n-1 be the zeros of Q(x). As in the lemma, there exist $z_i \in (x_i, x_{i+1})$, i = 1, 2, ..., n-2, such that $Q'(z_i) = 0$. Again, P(a) < 0, $P(z_1) > 0$, $P(z_2) < 0$, ..., $P(z_{n-2}) < 0$, P(b) > 0. Thus, P(x) has n-1 roots in (a, b). But $P(x) \to -\infty$ as $x \to \infty$ and $P(x) \to \infty$ as $x \to -\infty$, and, hence, P(x) has at least two additional zeros, one in $(-\infty, a)$ and another in (b, ∞) , for a total of at least n + 1 distinct zeros. Thus $\{x^{t_k}\}, k = 0, 1, ..., n$, is not a TS on $(-\infty, \infty)$.

Case 2. $\{t_k\}, k = 0, 1, ..., n - 1$ does not have APP.

Then, by induction hypothesis, there exist $\{a_k\}$, k = 0, 1, ..., n - 1, such that $Q(x) = \sum_{k=0}^{n-1} a_k x^{t_k}$ has *n* simple real zeros. Once again it is necessary to distinguish between various possibilities of the parities of t_{n-1} and t_n , as in Case 1. In each case, however, the appropriate choice of either $P(x) = Q(x) + \epsilon x^{t_n}$ or $P(x) = Q(x) - \epsilon x^{t_n}$ will guarantee that P(x) has at least n + 1 distinct real zeros. The proof is now complete.

A system of functions $\{U_k\}$, $U_k \in C[a, b]$, k = 0, 1, ..., n is said to be an interpolation system on [a, b] if for any real $\{x_k\}$, $\{y_k\}$, $a \leq x_k \leq b$, k = 0, 1, ..., n, there exist $\{a_k\}$, k = 0, 1, ..., n such that $\sum_{k=0}^{n} a_k U_k(x_j) = y_j$, j = 0, 1, ..., n.

It is well known that $\{U_k\}$ is an interpolation system on [a, b] if and only if $\{U_k\}$ is a TS on [a, b] [2]. We can thus conclude with an interpolation theorem stated as a

COROLLARY. Let $0 = t_0 < t_1 < \cdots < t_n$ be a sequence of integers. Then $\{x^{t_k}\}$ is an interpolation system on $(-\infty, \infty)$ if and only if $\{t_k\}$ has APP.

PASSOW

References

- 1. E. W. CHENEY, "Introduction to Approximation Theory," p. 77, McGraw-Hill, New York, 1966.
- 2. G. G. LORENTZ, "Approximation of Functions," p. 24, Holt, Rinehart, and Winston, New York, 1966.