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A system of functions {U,}, U,e Cla, b], k =0, 1,...,n, is said to be
a TchebychefT system (TS) on [a, b] if Ty a,U, has at most » distinct zeros
in [a, b], for any nontrivial choice of real {@,}. Let 0 =1, < #, < --- <,
be a sequence of real numbers. It is known that {x*}, k =0, 1,...,n,is a TS
on any interval [a, b] satisfying 0 <<a < b [1]. If a <0 < b, this result
does not necessarily hold; e.g., {1, x% is not a TS on [—1, 1]. In this paper
we seek conditions on {f,} that are necessary and sufficient for {x} to be
a TS on (— oo, o). In this case, naturally, we restrict the #;, to be integers.

DErINITION. A sequence of integers {#,}7._, is said to have the alternating
parity property (APP) if and only if #, = 0 and for all &, #,; is even and
ty.1 18 Odd.

THEOREM. Let 0 =ty <<t, < <t, be a sequence of integers. Then
{x%} is a TS on (— oo, o0) if and only if {t;} has APP.

Proof. Suppose {t,} has APP. We prove by induction that {x%} is a TS
on (— oo, o).

{0, 1;} has APP if and only if #, is odd, in which case g, - a,x™ has a
unique zero for any nontrivial choice of a,, @; . Assume the theorem true
for n — 1. Let {a;}, k = 0,1,..., n be arbitrary and set P(x) = 3y_o @xX.
Then P'(x) = Ypq (axty) X1 = xh=1 T3, (azty) x4,

Letb,_, =ayt,and S, =t, — t;, k= 1,2,...,n Then S, = 0 and {S;},
k=0,1,.,n—1 has APP. Thus, P'(x) = x1 Y ¢ bexS* = x1-10(x).
By induction hypothesis Q(x) has at most n — 1 distinct zeros. If b, = 0,
then P’(x) has at most n — 1 distinct zeros, so that P(x) has at most n
distinct zeros, since the zeros of P’(x) either separate the roots of P(x), are
points of inflection of P(x), or are zeros of P(x). If b, # 0, then 0 is not a
root of Q(x), so that P’'(x) could have n zeros. Since, however, t; — 1 is
even, 0 is a point of inflection of P(x), and not a local maximum or minimum.
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0 is thus not a separating zero of P’(x), so that P'(x) has at most n — 1
distinct separating zeros, and, hence, P(x) has at most n distinct zeros.
Before considering the converse we prove a preliminary result.

LEMMA. Suppose {t;}, k = 0, 1,...,n, has APP. Then there exist {a},
k=0, 1,..,n such that P(x) = Yx_o arXx' has n simple real zeros.

Proof. By induction. {0, t,} has APP if and only if #, is odd. In this case,
P(x) = 1 — xn has a simple zero at x = 1.

Assume the lemma is true for » — 1; i.e., suppose there exist {a;},
k=0,1,..,n — 1 such that Q(x) = Z:;; ayx™ has n — 1 simple real zeros.
We may assume that a,_, > 0.

Case 1. t,_, odd, ¢, even. Then Q(x) — — o as x — — 0. Let

m = min{| Q(x)|: x a local max or min of Q(x)};
a = min{x: Q(x) = —m};

b = max{x: Q(x) = m};

c=max(lal,|bl);

€ = m/2c'.

Note that m > 0, since, by induction hypothesis, Q(x) is assumed to have
n — 1 simple real zeros, while by the first part of the theorem, Q(x) can have
no more than n — 1 distinct real zeros. Thus Q(x) has exactly n — 1 simple
real zeros and no other real zeros, so that if Q(¢€) = 0 then Q'(£) # 0. Hence,
if Q(€) = 0, then £ is not a local max or min of Q(x).

Let P(x) = Q(x) + exis. Then | P(x) — Q(x)] < m/2,a < x < b. Let x;,
i=1,2,..,n— 1, be the zeros of Q(x). Then there exist z; € (x;, X;.1),
i=1,2,.,n—2, such that Q’(z;) =0. Then Q(a) = —m, Q(zy) =m,
0z < —m,..., Q(z4g) < —m. Thus P(a) <0, P(z) >0, P(z;) <0,..,
P(z,_;) <0, so that P(x) has n — 2 zeros in (a, z,_,). Also P(x) — o as
x — 400, and, hence, P(x) has two additional zeros, one in (— o, @), the
other in (z,_, , o). Thus P(x) has a total of n simple real zeros.

Case 2. t,_; even, t, odd. Then Q(x) —> o0 as x > — co.
Let m, b be as in Case 1, and let

a = min{x: Q(x) = mj};

c=max(lal,|b]);

€ = mf2c'n,
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and let P(x) = Q(x) + ex‘». Following the method of Case 1, we prove that
P(x) has n simple real zeros, thus proving the lemma.

We return to the converse of the theorem which is also proved by induc-
tion. {0, #;} does not have APP if and only if ¢ is even. In this case
P(x) = 1 — x'r has two distinct real zeros in (— oc, o0) so that {1, x1} is not
a TS on (— o0, w).

Now suppose the theorem is true for » — 1, and suppose {t;.},k =0, 1,....n
does not have APP.

Case 1. {t,},k =0,1,....n — 1 has APP.

There are two possibilities: 7,_, and ¢, odd, or 7,_; and ¢, even. We
consider only the first; the second is handled analogously. By the lemma,
there exist {a;}, k = 0, 1,..., n — 1 such that Q(x) = Z’,:;(l, ax has n — 1
simple real zeros. We assume that a,,_; > 0. Then Q(x) — o0 as x — oo and
Q(x) > — o as x —> — 0. Let m, a, b, ¢, and € be as in Case 1 of the lemma,
and let P(x) = Q(x) — ex®», Let x;, i = 1, 2,..., n — 1 be the zeros of Q(x).
As in the lemma, there exist z; € (x;, X;.4), I = 1, 2,...,n — 2, such that
0Q'(z;) = 0. Again, P(a) < 0, P(z,) > 0, P(z,) <0,..., P(z,_,) <0, P(b) > 0.
Thus, P(x) has » — 1 roots in (a, b). But P(x) - — o0 as x — oo and
P(x) — o0 as x — — oo, and, hence, P(x) has at least two additional zeros,
one in (-— 00, a) and another in (b, o), for a total of at least » -+ 1 distinct
zeros. Thus {x*}, k = 0, 1,..., n, is not a TS on (— oo, o).

Case 2. {t.},k =0,1,...,n — 1 does not have APP.

Then, by induction hypothesis, there exist {a,}, k =0, 1,...,n — 1, such
that Q(x) = ZZ:, a,x'* has n simple real zeros. Once again it is necessary
to distinguish between various possibilities of the parities of ¢,_; and ¢,,
as in Case 1. In each case, however, the appropriate choice of either
P(x) = Q(x) + ex' or P(x) = Q(x) — ext» will guarantee that P(x) has at
least n + 1 distinct real zeros. The proof is now complete.

A system of functions {U,}, U, € Cla, b], k =0, 1,..., n is said to be an
interpolation system on [a, b] if for any real {x.}, {yi}, a < x; < b,
k=0, 1,..., n, there exist {a;}, k = 0, 1,..., n such that 3, o a,Uu(x;) = y;,
j=0,1,.,n.

It is well known that {U,} is an interpolation system on [a, b] if and only
if {U,} is a TS on [a, b] [2]. We can thus conclude with an interpolation
theorem stated as a

COROLLARY. Let 0=1t, <<t < - <t, be a sequence of integers.
Then {x%} is an interpolation system on (— o0, ) if and only if {t;}
has APP.
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