Alternating Parity of Tchebycheff Systems

Eli Passow
Mathematics Department, Temple University, Philadelphia, Pennsylvania 19122

Communicated by Oved Shisha
Received November 26, 1971

A system of functions $\left\{U_{k}\right\}, U_{k} \in C[a, b], k=0,1, \ldots, n$, is said to be a Tchebycheff system (TS) on $[a, b]$ if $\sum_{k=0}^{n} a_{k} U_{k}$ has at most n distinct zeros in $[a, b]$, for any nontrivial choice of real $\left\{a_{k}\right\}$. Let $0=t_{0}<t_{1}<\cdots<t_{n}$ be a sequence of real numbers. It is known that $\left\{x^{t_{k}}\right\}, k=0,1, \ldots, n$, is a TS on any interval [a, b] satisfying $0 \leqslant a<b$ [1]. If $a<0<b$, this result does not necessarily hold; e.g., $\left\{1, x^{2}\right\}$ is not a TS on $[-1,1]$. In this paper we seek conditions on $\left\{t_{k}\right\}$ that are necessary and sufficient for $\left\{x^{t_{k}}\right\}$ to be a TS on $(-\infty, \infty)$. In this case, naturally, we restrict the t_{k} to be integers.

Definition. A sequence of integers $\left\{t_{k}\right\}_{k=0}^{n}$ is said to have the alternating parity property (APP) if and only if $t_{0}=0$ and for all $k, t_{2 k}$ is even and $t_{2 k+1}$ is odd.

Theorem. Let $0=t_{0}<t_{1}<\cdots<t_{n}$ be a sequence of integers. Then $\left\{x^{t_{k}}\right\}$ is a TS on $(-\infty, \infty)$ if and only if $\left\{t_{k}\right\}$ has APP.

Proof. Suppose $\left\{t_{k}\right\}$ has APP. We prove by induction that $\left\{x^{\left.t_{k}\right\}}\right.$ is a TS on $(-\infty, \infty)$.
$\left\{0, t_{1}\right\}$ has APP if and only if t_{1} is odd, in which case $a_{0}+a_{1} x^{t_{1}}$ has a unique zero for any nontrivial choice of a_{0}, a_{1}. Assume the theorem true for $n-1$. Let $\left\{a_{k}\right\}, k=0,1, \ldots, n$ be arbitrary and set $P(x)=\sum_{k=0}^{n} a_{k} x^{t_{k}}$. Then $P^{\prime}(x)=\sum_{k=1}^{n}\left(a_{k} t_{k}\right) x^{t_{k}-1}=x^{t_{1}-1} \sum_{k=1}^{n}\left(a_{k} t_{k}\right) x^{t_{k}-t_{1}}$.

Let $b_{k-1}=a_{k} t_{k}$ and $S_{k-1}=t_{k}-t_{1}, k=1,2, \ldots, n$. Then $S_{0}=0$ and $\left\{S_{k}\right\}$, $k=0,1, \ldots, n-1$ has APP. Thus, $P^{\prime}(x)=x^{t_{1}-1} \sum_{k=0}^{n-1} b_{k} x^{S_{k}}=x^{t_{1}-1} Q(x)$. By induction hypothesis $Q(x)$ has at most $n-1$ distinct zeros. If $b_{0}=0$, then $P^{\prime}(x)$ has at most $n-1$ distinct zeros, so that $P(x)$ has at most n distinct zeros, since the zeros of $P^{\prime}(x)$ either separate the roots of $P(x)$, are points of inflection of $P(x)$, or are zeros of $P(x)$. If $b_{0} \neq 0$, then 0 is not a root of $Q(x)$, so that $P^{\prime}(x)$ could have n zeros. Since, however, $t_{1}-1$ is even, 0 is a point of inflection of $P(x)$, and not a local maximum or minimum.

0 is thus not a separating zero of $P^{\prime}(x)$, so that $P^{\prime}(x)$ has at most $n-1$ distinct separating zeros, and, hence, $P(x)$ has at most n distinct zeros.

Before considering the converse we prove a preliminary result.

Lemma. Suppose $\left\{t_{k}\right\}, k=0,1, \ldots, n$, has APP. Then there exist $\left\{a_{k}\right\}$, $k=0,1, \ldots, n$ such that $P(x)=\sum_{k=0}^{n} a_{k} x^{t_{k}}$ has n simple real zeros.

Proof. By induction. $\left\{0, t_{1}\right\}$ has APP if and only if t_{1} is odd. In this case, $P(x)=1-x^{t_{1}}$ has a simple zero at $x=1$.

Assume the lemma is true for $n-1$; i.e., suppose there exist $\left\{a_{k}\right\}$, $k=0,1, \ldots, n-1$ such that $Q(x)=\sum_{k=0}^{n-1} a_{k} x^{t_{k}}$ has $n-1$ simple real zeros. We may assume that $a_{n-1}>0$.

Case 1. t_{n-1} odd, t_{n} even. Then $Q(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Let

$$
\begin{aligned}
m & =\min \{|Q(x)|: x \text { a local } \max \text { or } \min \text { of } Q(x)\} \\
a & =\min \{x: Q(x)=-m\} \\
b & =\max \{x: Q(x)=m\} \\
c & =\max (|a|,|b|) \\
\epsilon & =m / 2 c^{t_{n}}
\end{aligned}
$$

Note that $m>0$, since, by induction hypothesis, $Q(x)$ is assumed to have $n-1$ simple real zeros, while by the first part of the theorem, $Q(x)$ can have no more than $n-1$ distinct real zeros. Thus $Q(x)$ has exactly $n-1$ simple real zeros and no other real zeros, so that if $Q(\xi)=0$ then $Q^{\prime}(\xi) \neq 0$. Hence, if $Q(\xi)=0$, then ξ is not a local max or min of $Q(x)$.

Let $P(x)=Q(x)+\epsilon x^{t_{n}}$. Then $|P(x)-Q(x)| \leqslant m / 2, a \leqslant x \leqslant b$. Let x_{i}, $i=1,2, \ldots, n-1$, be the zeros of $Q(x)$. Then there exist $z_{i} \in\left(x_{i}, x_{i+1}\right)$, $i=1,2, \ldots, n-2$, such that $Q^{\prime}\left(z_{i}\right)=0$. Then $Q(a)=-m, Q\left(z_{1}\right) \geqslant m$, $Q\left(z_{2}\right) \leqslant-m, \ldots, Q\left(z_{n-2}\right) \leqslant-m$. Thus $P(a)<0, P\left(z_{1}\right)>0, P\left(z_{2}\right)<0, \ldots$, $P\left(z_{n-2}\right)<0$, so that $P(x)$ has $n-2$ zeros in $\left(a, z_{n-2}\right)$. Also $P(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$, and, hence, $P(x)$ has two additional zeros, one in $(-\infty, a)$, the other in $\left(z_{n-2}, \infty\right)$. Thus $P(x)$ has a total of n simple real zeros.

Case 2. t_{n-1} even, t_{n} odd. Then $Q(x) \rightarrow \infty$ as $x \rightarrow-\infty$.
Let m, b be as in Case 1, and let

$$
\begin{aligned}
& a=\min \{x: Q(x)=m\} \\
& c=\max (|a|,|b|) \\
& \epsilon=m / 2 c^{t_{n}}
\end{aligned}
$$

and let $P(x)=Q(x)+\epsilon x^{t_{n}}$. Following the method of Case 1 , we prove that $P(x)$ has n simple real zeros, thus proving the lemma.

We return to the converse of the theorem which is also proved by induction. $\left\{0, t_{1}\right\}$ does not have APP if and only if t_{1} is even. In this case $P(x)=1-x^{t_{1}}$ has two distinct real zeros in $(-\infty, \infty)$ so that $\left\{1, x^{t_{1}}\right\}$ is not a TS on $(-\infty, \infty)$.

Now suppose the theorem is true for $n-1$, and suppose $\left\{t_{k}\right\}, k=0,1, \ldots, n$ does not have APP.

Case 1. $\left\{t_{k}\right\}, k=0,1, \ldots, n-1$ has APP.
There are two possibilities: t_{n-1} and t_{n} odd, or t_{n-1} and t_{n} even. We consider only the first; the second is handled analogously. By the lemma, there exist $\left\{a_{k}\right\}, k=0,1, \ldots, n-1$ such that $Q(x)=\sum_{k=0}^{n-1} a_{k} x^{t_{k}}$ has $n-1$ simple real zeros. We assume that $a_{n-1}>0$. Then $Q(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $Q(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Let m, a, b, c, and ϵ be as in Case 1 of the lemma, and let $P(x)=Q(x)-\epsilon x^{t_{n}}$. Let $x_{i}, i=1,2, \ldots, n-1$ be the zeros of $Q(x)$. As in the lemma, there exist $z_{i} \in\left(x_{i}, x_{i+1}\right), i=1,2, \ldots, n-2$, such that $Q^{\prime}\left(z_{i}\right)=0$. Again, $P(a)<0, P\left(z_{1}\right)>0, P\left(z_{2}\right)<0, \ldots, P\left(z_{n-2}\right)<0, P(b)>0$. Thus, $P(x)$ has $n-1$ roots in (a, b). But $P(x) \rightarrow-\infty$ as $x \rightarrow \infty$ and $P(x) \rightarrow \infty$ as $x \rightarrow-\infty$, and, hence, $P(x)$ has at least two additional zeros, one in $(-\infty, a)$ and another in (b, ∞), for a total of at least $n+1$ distinct zeros. Thus $\left\{x^{t_{k}}\right\}, k=0,1, \ldots, n$, is not a TS on $(-\infty, \infty)$.

Case 2. $\left\{t_{k}\right\}, k=0,1, \ldots, n-1$ does not have APP.
Then, by induction hypothesis, there exist $\left\{a_{k}\right\}, k=0,1, \ldots, n-1$, such that $Q(x)=\sum_{k=0}^{n-1} a_{k} x^{t_{k}}$ has n simple real zeros. Once again it is necessary to distinguish between various possibilities of the parities of t_{n-1} and t_{n}, as in Case 1. In each case, however, the appropriate choice of either $P(x)=Q(x)+\epsilon x^{t_{n}}$ or $P(x)=Q(x)-\epsilon x^{t_{n}}$ will guarantee that $P(x)$ has at least $n+1$ distinct real zeros. The proof is now complete.

A system of functions $\left\{U_{k}\right\}, U_{k} \in C[a, b], k=0,1, \ldots, n$ is said to be an interpolation system on $[a, b]$ if for any real $\left\{x_{k}\right\},\left\{y_{k}\right\}, a \leqslant x_{k} \leqslant b$, $k=0,1, \ldots, n$, there exist $\left\{a_{k}\right\}, k=0,1, \ldots, n$ such that $\sum_{k=0}^{n} a_{k} U_{k}\left(x_{j}\right)=y_{j}$, $j=0,1, \ldots, n$.

It is well known that $\left\{U_{k}\right\}$ is an interpolation system on $[a, b]$ if and only if $\left\{U_{k}\right\}$ is a TS on $[a, b]$ [2]. We can thus conclude with an interpolation theorem stated as a

Corollary. Let $0=t_{0}<t_{1}<\cdots<t_{n}$ be a sequence of integers. Then $\left\{x^{t_{k}}\right\}$ is an interpolation system on $(-\infty, \infty)$ if and only if $\left\{t_{k}\right\}$ has APP.

References

1. E. W. Cheney, "Introduction to Approximation Theory," p. 77, McGraw-Hill, New York, 1966.
2. G. G. Lorentz, "Approximation of Functions," p. 24, Holt, Rinehart, and Winston, New York, 1966.
